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We study the thermodynamic properties of spin systems with bond-disorder on small-world hypergraphs,
obtained by superimposing a one-dimensional Ising chain onto a random Bethe graph with p-spin interactions.
Using transfer-matrix techniques, we derive fixed-point equations describing the relevant order parameters and
the free energy, both in the replica symmetric and one step replica symmetry breaking approximation. We
determine the static and dynamic ferromagnetic transition and the spinglass transition within replica symmetry
for all temperatures, and demonstrate corrections to these results when one step replica symmetry breaking is
taken into account. The results obtained are in agreement with Monte-Carlo simulations.
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I. INTRODUCTION

Many real-world systems and applications under scrutiny
these days require random diluted graphs to model the inter-
actions. These graphs often are of a bipartite nature, separat-
ing the interactions from the variables in the model, and
hence allowing for more complex schemes of interactions. A
simple, and much used, example of this type of graphs is the
finitely connected random graph with p-spin Ising-like inter-
actions. Such graphs are succesfully employed in the de-
scription and analysis of error correcting codes �e.g., the low
density parity check codes, see �1,2��, satisfiability problems
�e.g., the k-sat problem �3��, modeling of structural glasses
and spin-glasses �4�, proteomic networks �5�, etc.

Some of these systems, however, require not only long-
range interactions to effectively describe the system, but
moreover possess local structures. There is a notion of neigh-
borhood or distance between spins, and spins that are close
have additional interactions of another type than the long-
range ones. It is in this context that small-world networks
have been developed, to provide a simple model that com-
bines both long-range interactions with local interactions.
One such small-world network to which a lot of work has
already been devoted �see �6–8� and references therein� is
the random graph supplemented with a one-dimensional
chain connecting all spins together, yielding the most simple
notion of neighborhood: Nearest-neighbor interactions.

In this work we study the thermodynamic properties of
such a small-world graph, composed of a finite and constant
number of p-spin interactions �a p-spin Bethe-lattice� and a
one-dimensional chain interconnecting all spins. We calcu-
late the self-consistent equations governing the statics of the
system by employing transfer-matrix techniques, and solve
these equations in the replica symmetric �RS� approximation
to determine the spin-glass transition and the static and dy-
namic ferromagnetic transitions as function of the system
parameters. We focus especially on the influence of bond
disorder. The corresponding phase diagrams show reentrance
effects, indicating replica symmetry breaking �RSB�, and we
apply one-step replica symmetry breaking �1RSB� in the re-
entrance regions. The results obtained are compared with
Monte Carlo simulations. This paper extends our earlier
work �see �10,11��, where we used analogous methods to

study a small-world graph with poisson-distributed interac-
tions. However, in that paper we did not consider bond-
disorder and only discussed the RS ferromagnetic results.

This paper is organized as follows. In Sec. II we define
the small-world model. In Sec. III we derive the saddle-point
equations, and apply transfer matrix techniques to obtain the
eigenvector equations determining the order parameter func-
tions. In Sec. IV we solve these eigenvector equations in the
RS approximation, leading to self-consistent equations for
the order parameter functions. Section V discusses the ana-
log 1RSB equations. The RS and 1RSB results are presented
in Sec. VI A and Sec. VI B. Finally, Sec. VII presents some
concluding remarks.

II. MODEL

Consider a spin system of N Ising spins �= ��1 , . . . ,�N�,
�i� �−1,1�, arranged on a Bethe lattice with p-spin interac-
tions, and interconnected with a one-dimensional chain. The
Hamiltonian is given by

H��� = − �
i

�ihi��� , �1�

with

hi��� =
1

cp! �
j1. . .jp−1

Ji,j1,. . .,jp−1
ci,j1,. . .,jp−1

� j1
. . . � jp−1

+
J0

2
��i−1 + �i+1� . �2�

The connection strengths for the longe range p-spin interac-
tions Jj1. . .jp

are taken from the distribution

P�Jj1. . .jp
� = b��Jj1. . .jp

− J� + �1 − b���Jj1. . .jp
+ J� , �3�

with b� �0,1� the bias and J a positive constant. The con-
nection strength for the chain J0 is a constant. The couplings
cj1. . .jp

� �0,1� are random, but with the restriction that every
spin has degree c, or put otherwise, is part of c hyperedges.
These couplings are thus taken from the following distribu-
tion:
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P�cj1. . .jp
� = �c

�p − 1�!
Np−1 ��cj1. . .jp

− 1�

+ 	1 − c
�p − 1�!

Np−1 
��cj1. . .jp
��

� �
j1

�c,�j2
. . .�jp

cj1
. . .jp/�p−1�! . �4�

The total number of hyperedges that a spin � is part of is
then by definition c:

1

N
�

i

1

�p − 1�!�j1
¯ �

jp−1

ci,j1,. . .,jp−1
 c . �5�

Since we are interested in the finitely connected case, we
consider c to be of order O�1�, with c /N→0.

Self-interaction and hyperedges of reduced degree are
prohibited by the following rule:

∀k � l � �1, . . . ,p�:jk = jl ⇒ cj1. . .jp
= 0. �6�

This means that when any two indices are equal the hyper-
edge cannot exist. Also, the couplings are symmetrical: For
any permutation � in Sp we have that

cj1. . .jp
= cj��1�. . .j��p�

. �7�

III. SADDLE-POINT EQUATIONS

As usual we replicate the partition function in order to
calculate the free energy. Analytically, the calculation is
analogous to the one found in �11�

f��� = − lim
N→�

lim
n→0

1

�Nn
log �Zn�c,J, �8�

with �Zn� given, after some algebra, by the saddle point equa-
tion:

�Zn� =
1

N � �dP̂ dP�exp„N��P, P̂�… , �9�

��P, P̂� = i�
�

P̂���P��� +
c

p
�

�1. . .�p

�
k=1

p

P��k��e�J/c�	
1
	. . .
p

	
�J

−
c

p
+

1

N
log� �

�1. . .�n

exp	�J0�
i	

�i
	�i+1

	 

��

i

�− iP̂��i��c� − log�c!� �10�

with 	=1, . . . ,n the replica index. The average over J has to
be taken according to Eq. �3�, and represents the bond-
disorder in the system.

The next step is to take derivatives of ��P , P̂� to find the
solution of our saddle point equation. For the sake of brevity
we first define a new variable F���:

F���  c �
�1. . .�p−1

�
k=1

p−1

P��k��e�J/c�	
1
	. . .
p−1

	 �	
�J �11�

with which we can write the solution of the saddle point
equation as

P��� =
��1. . .�n��i�F��i��−1��i,�

�� jT�j,�j+1

c−1N��1. . .�n� jT�j,�j+1

, �12�

where we have introduced the transfer matrix

T�,�  exp	�J0�
	

�	
	
Fc��� . �13�

This equation can be simplified by introducing the left and
right eigenvalue equations of this transfer matrix belonging
to the largest eigenvalue �0:

�
�

T�,�u��� = �0u��� , �14�

�
�

v���T�,� = �0v��� . �15�

Inserting these properties in Eq. �12� leads to

P��� =
���T��

N−1Q�����
��TN��

�16�

=
��u���v���exp��J0�	�	�	�Fc−1���

�0��u���v���
, �17�

where Q�,����exp��J0�	�	
	�Fc−1�����,�. In the transi-
tion to the last line we have used the fact that in the thermo-
dynamic limit only this largest eigenvalue �0 contributes to
the eigenvalue expansion of TN. It is easy to show that this
eigenvalue �0=1 in the limit n→0 �see, e.g. �6��.

IV. RS ANALYSIS

For the RS equations we assume that all the replicas of
the system can be permuted without affecting the results. We
make the usual assumption �see, e.g. �12�� that we can write
the probability density P��� and the eigenvectors u��� and
v��� as

P��� =� dh W�h��
	=1

n
e�h�	

2 cosh��h�
, �18�

u��� =� dx �x��
	=1

n

e�x�	
, �19�

v��� =� dy ��y��
	=1

n

e�y�	
. �20�

Combining Eqs. �19� and �14� allows us to calculate the den-
sity �x� in a self-consistent way. We also take the limit
n→0, and obtain
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�x�� =� dx �x��
k=1

p−1

�
�=1

c � dhk
�W�hk

��

�� dJ P�J���x� − R�x,h�� , �21�

with

R�x,h� 
1

�
��

�

atanh�tanh	�J

c

�

k=1

p−1

tanh��hk
���

+ atanh�tanh��x�tanh��J0��� . �22�

An analogous calculation leads to the self-consistent equa-
tion for ��x�:

��x�� =� dx ��x��
k=1

p−1

�
�=1

c � dhk
�W�hk

��

�� dJ P�J���x� − L�x,h�� , �23�

where L�x ,h� is given by

L�x,h� 
1

�
atanh�tanh��J0� tanh��x

+ �
�

atanh�tanh	�J

c

�

k

tanh��hk
����� .

�24�

The third self-consistent equation is for the density W�x�.
This can be found by using Eq. �17� and filling in the RS
ansatz for P���, yielding

W�h� =� dx dy �x���y��
k=1

c−1

�
l=1

p−1

dhl
kW�hl

k�dJP�J�

���h − y −
1

�
atanh�tanh��x�tanh��J0��

−
1

�
�
k=1

c−1

atanh�tanh	�J

c

�

l

tanh��hl
k��� . �25�

The self-consistent equations above allow us to calculate
the thermodynamic properties of the system. First of all, we
find the magnetization as

m =� 1

N
�

i

�i�
c,J

�26�

=� dh W�h�tanh��h� . �27�

Similarly we write down the EA parameter q	� �with 	���:

q	� =�	 1

N
�

i

�i
	�i

�
�
c,J

�28�

=� dh W�h�tanh2��h� . �29�

The free energy is given by

− �f��� =
c�1 − p�

p
� dJ P�J���

k=1

p � dhkW�hk��
�log	 �


1. . .
p

e��khk
k+��J/c�
1. . .
p

+� dJ P�J� � dx �x��

�=1

c

�
k=1

p−1 � dhk
�W�hk

��

�	1

2�
s

log�Gs�x,h��
 , �30�

with

Gs�x,h� = 	�



e�x
+�J0s

 � �
�=1

c

�

1. . .
p−1

e��khk
�
k+��J/c�
1. . .
p−1s.

�31�

By taking specific limits, these equations reduce to the self-
consistent equations of other simpler systems. In the limit
J→0 they reduce to those of an Ising chain. In the limits
�→� and J0→0 they become the equations of the Bethe
spin-glass at zero temperature �see, e.g. �13��. In the latter
case we notice that the distribution W�h� corresponds to the
cavity field distribution in the graph, and the distribution
�x� corresponds to the effective local fields. The distribu-
tion ��y� vanishes when J0→0.

V. 1RSB SELF-CONSISTENT EQUATIONS

The RS assumption causes reentrance effects, indicating
that replica symmetry is broken in certain regions of param-
eter space. As a first step to find improved results in this
region, we can calculate the corresponding 1RSB equations
describing the model. We start from Eq. �17� and use the
1RSB form for the probability density P��� and the eigen-
vectors u��� and v��� �see, e.g. �12��:

P��� =� DW ��W��
�=1

n/m �� dh W�h�
e�h�	=1

m �	,�

�2 cosh��h��m� ,

�32�

u��� =� D� �����
�=1

n/m �� dx ��x�e�x�	=1
m �	,�� , �33�

v��� =� D� �����
�=1

n/m �� dy ��y�e�y�	=1
m �	,�� . �34�

The objects ��W�, ����, and ���� are distributions of dis-
tributions, and the integrations �D�·� must be interpreted in a
distributional sense. Replicas now acquire two indices, the
first one �=1, . . . ,n /m denoting to which group of replicas it
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belongs and the second one 	=1, . . . ,m indicating the par-
ticular replica in the group. The variable m denotes the rela-
tive size of the group. We have to consider the limit n→0
and m a real number, m� �0,1�. This parameter m is not a
free parameter, we need to use the m that extremizes the free
energy �see e.g. �9,15��.

The detailed calculation of the self-consistent equations
for these distributions can be found in the Appendix. We now
have three order parameters in the system: The magnetiza-
tion m, and two Edwards-Anderson parameters, q0 for repli-
cas belonging to different pure states, and q1 for replicas
within a single pure state. They are given by

m =� DW ��W� � dh W�h�tanh��h� ,

q0 =� DW ��W��� dh W�h�tanh��h��2

,

q1 =� DW ��W� � dh W�h��tanh��h��2.

The free energy is given by

− �f��� =
c�1 − p�

mp
�
k=1

p � DWk��Wk�log�� dhkWk�hk�dJP�J�
�2 cosh��hk��m � �


1. . .
p

exp	��
k

hk

k +

�J

c

1 . . . 
p
�m�

+
1

m
� D� �����

�=1

c

�
k=1

p−1 � DWk,���Wk,��log�Z���,�Wk,��k,��� , �35�

with Z� a normalization

Z���,�Wk,��k,��  � dx ��x� � �
�,k

dhk,�Wk,��hk,��
�2 cosh��hk,���m � dJ P�J�exp	m

2 �
�

log Gs�x,�hk,��k,��
 . �36�

VI. NUMERICAL SOLUTION

The self-consistent equations above are numerically
solved by the technique of population dynamics �9�. Here the
different probability densities that appear in Eqs. �21�, �23�,
and �25� are represented by distributions of fields, and by
distributions of such distributions in the case of the corre-
sponding 1RSB equations. A recursive scheme �see, e.g. �9��
then allows these distributions to evolve towards the equilib-
rium distributions that solve the self-consistent equations.
Monte Carlo integration over these distributions allows to
obtain the physical parameters. Furthermore, using the 1RSB
equations, we have to determine the m that extremizes f�m�.

The accuracy �and numerical cost� of the algorithm is
mainly determined by the number of fields one chooses to
make up the different distributions. This cannot be too low,
since then the distributions will not be clearly outlined, but it
cannot be too big either, since the numerical cost rises lin-
early �in the case of RS� and quadratically �in the case of
1RSB� with this parameter. In the RS algorithms we use
populations of size 105 fields, which results in smooth and
accurate results. In the case of the 1RSB algorithm, however,
we are constrained by the sheer numerical cost to popula-
tions of the order of 1000 samples �so 1000 populations of
1000 fields each�. This will put an upper limit to the accuracy
we can achieve.

A. RS results

We test our results against those of �14�. To this end, we
put the system parameters to the following values: The de-

gree of the interactions p=2, the number of connections per
spin c=6, the connection strength J=1 and the bias b
=0.625. We are able to fully reproduce the RS results pre-
sented in �14�, although we numerically solved the self-
consistent equations �21�, �23�, and �25� to obtain these re-
sults, as opposed to the bifurcation analysis employed in
�14�.

We are interested in the phase diagrams for systems with
bias and hyperspin interactions �p�2�. A typical result can
be found in Fig. 1, where we plot the full phase diagram for
the parameters p=3, c=3, J=1 and b=0.8. The spinodal
transition, in full, is of first order, which is typical for hyper-
spin interactions. This also means we will have a coexistence
of solutions close to this transition. By comparing the corre-
sponding free energies we determine the thermodynamic
transition, given as a dotted line. The different phases and
coexisting phases are indicated in Fig. 1.

Furthermore, we clearly see that when the ferromagnetic
transition lines approach the spinglass transition, a reen-
trance effect sets in, indicative of replica symmetry breaking.
By using different initial distributions in the RS algorithm
and comparing the final distributions for quenched disorder,
we check whether ergodicity is broken or not in the reen-
trance region. These points are indicated in Fig. 1 as a dash-
dotted line that further illustrates the broken replica symme-
try.

Next, to check the influence of frustration on these results,
we can generate similar phase diagrams for other values of
the bias b. The spinodal transitions are given in Fig. 2, with
p=3, c=3 and several values of the bias b, along with Monte
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Carlo simulation results. Again we find reentrance effects for
the frustrated graphs, and this effect becomes stronger when
the frustration increases due to smaller bias b. The simula-
tions agree with the results obtained by population dynamics
for low frustration, but start to differ slightly when this frus-
tration increases due to the slow dynamics of the system for
these parameters.

B. 1RSB results

Since the above results all display reentrance indicating
RSB, we now look closer to these regions in parameter space
employing the 1RSB approach to determine possible correc-
tions. However, the algorithm proves to be very demanding
numerically, and hence the results turn out to be rather noisy.

The free energy results presented in this section are averages
over many iterations of the algorithm.

In order to see whether the 1RSB approach will give dif-
ferent results in the reentrance region, we focus on a single
point in this region on Fig. 1: The point T=0.15 and J0
=0.15. The free energy as a function of the RSB parameter m
for this point is plotted in Fig. 3. We need to first find that
value of m that maximizes this free energy, and although the
results are noisy we see that this maximum is reached around
mmax�0.15. The order parameters of the system are plotted
as function of m in Fig. 4 and we see that at mmax the mag-
netization is nonzero, indicating that this point is located
inside the ferromagnetic region, as opposed to the RS spin-
glass result. However, because of the noise in the system and
the sharp transition from a spinglass solution to a ferromag-
netic solution in the neighborhood of mmax, it is hard to
present quantitative results with the 1RSB approach. We did
find a qualitative indication that the 1RSB method will at
least decrease the reentrance region in the phase diagram.
Creating a 1RSB phase transition line between the ferromag-
netic and spinglass phase is unfortunately beyond our present
computational capabilities, and we will not pursue this goal
in this paper.

0 0.1 0.2 0.3 0.4
J

0

0.2

0.4

0.6

0.8

T

0

P

SG

F+P

F+SG

F

FIG. 1. RS phase diagram for p=3, c=3, J=1, and b=0.8. The
solid line depicts the ferromagnetic spinodal transition, and to the
right of this line we can find ferromagnetic states, coexisting with
the other solutions. The dotted line represents the ferromagnetic
thermodynamic transition, where the ferromagnetic solution be-
comes thermodynamically stable. The spin-glass transition line is
given by the dashed line. The dash-dotted line indicates ergodicity
breaking in the RS algorithm.

0 0.2 0.4 0.6 0.8
J

0

0.2

0.4

0.6

0.8

1

T

0

FIG. 2. RS phase diagram for p=3, c=3, J=1 and different
biases b. The solid lines represent the dynamic ferromagnetic tran-
sition with, from left to right, b=1, b=0.9, b=0.8, and b=0.7. The
ferromagnetic region is located to the right of the respective transi-
tion lines. The circles are the corresponding transitions obtained by
simulations. See Fig. 1 for a further specification of the different
phases.

0 0.1 0.2 0.3 0.4 0.5
m

-0.52

-0.5

-0.48

-0.46

-0.44

-0.42

-0.4

-0.38

f

FIG. 3. 1RSb free energy as function of m for T=0.15, J0

=0.15, p=3, c=3, J=1, and b=0.8. The maximum is reached
around mmax�0.15.

0 0.1 0.2 0.3 0.4 0.5
m

0

0.2

0.4

0.6

0.8

1

m
q
q

1

0

FIG. 4. 1RSb order parameters as function of m for T=0.15,
J0=0.15, p=3, c=3, J=1, and b=0.8. The full line is the magneti-
zation, the dashed line is q0, and the dotted line is q1. At mmax �see
Fig. 3� the magnetization starts to be nonzero, indicating a ferro-
magnetic phase.
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We have also calculated the limits of the 1RSB equations
for T→0 and J0→0. The results obtained are in agreement
with those presented in �13�. The noise in the system seems
to decrease significantly in this limiting case, and we con-
clude that the major source of the noise in the algorithm is
the interaction between the ferromagnetic ring and the bond-
disordered random hypergraph. When the ring is not present,
we are left with only a single density, and the algorithm
functions much better for the relatively small system sizes
we employ.

VII. CONCLUSIONS

In this paper, we have studied the thermodynamic proper-
ties of a Bethe lattice with p-spin interactions augmented
with a one-dimensional ferromagnetic chain interconnecting
all spins. We have calculated the RS and 1RSB self-
consistent equations describing the order parameters and the
free energy. By employing population dynamics we have
been able to solve these self-consistent equations and to ob-
tain the phase diagrams of the system as function of the
different system parameters. We have noticed reentrance ef-
fects in the RS phase diagrams, increasing with the bond

disorder in the system, indicating RSB. The 1RSB algorithm
indicates that this reentrance region will decrease when rep-
lica symmetry breaking is taken into account. The algorithm
is quite noisy however, preventing us from giving precise
quantitative results. By both the analytic analysis and the
numerical results using the corresponding algorithms at tem-
perature zero and zero chain interaction, we observe a sub-
stantial decrease in the noise on the results. This leads us to
believe that the ferromagnetic chain is the major factor caus-
ing the noise in the 1RSB algorithm.
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APPENDIX: CALCULATION OF THE SELF-CONSISTENT
EQUATIONS

To calculate the 1RSB self-consistent equations for the
distributions ��W�, ����, and ����, we start with the ei-
genvector equation of the transfer matrix T �14�, and fill in
the 1RSB assumption concerning the different matrices and
vectors �32� and �33�:

�
�

T�,�u��� = �
�

exp	�J0�
	=1

n

�	
	
� �
�1. . .�p−1

�
k=1

p−1

P��k��e�J/c�	
	
1 . . .
	

p−1�	��c

u���

= �
�
� D� �����

�=1

n/m � dx���x��exp	�x��
	=1

m


	,� + �J0�
�

�
	

�	,�
	,�
�
�=1

c

�
�1,�. . .�p−1,�

�
k=1

p−1 � DWk,���Wk,���
�=1

n/m

�� dh�
k,�Wk,��h�

k,��
e�h�

k,��	=1
m 
	,�

k,�

�2 cosh��h�
k,���mexp	�J

c
�
	

�
�


	,�
1,� . . . 
	,�

p−1�	,�
 . �A1�

We put all the exponentials together

F�
�	,��x�,�h�

k,��k,��  	�



exp��x�
 + �J0�	,�
�
�
�=1

c

�

1,�. . .
p−1,�

�
k=1

p−1

exp	�h�
k,�
k,� +

�J

c

1,� . . . 
p−1,��	,�
 �A2�

and use the identity

�
�,	

F�
�	,� = exp	�

�,	
log F�

�	,�
 = exp��
�,	

�	,�	1

2�
�

� log F�
�
 + m�

�
	1

2�
�

log F�
�
� �A3�

to obtain

�
�

T�,�u��� =� D� �����
�=1

n/m � dx���x���
�=1

c

�
k=1

p−1 � DWk,���Wk,���
�=1

n/m � dh�
k,�Wk,��h�

k,��
�2 cosh��h�

k,���m

��
�

exp��
	

�	,�	1

2�
�

� log F�
��x�,�h�

k,��k,��
 + m	1

2�
�

log F�
��x�,�h�

k,��k,��
� . �A4�

We now employ the fact that
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1

2�
�
�

� log F�
��x�,�h�

k,��k,��  R�x�,�h�
k,��k,�� =

1

�
��

�

atanh�tanh	�J

c

�

k=1

p−1

tanh��h�
k,��� + a tanh�tanh��x��tanh��J0��� ,

�A5�

and write the expression �A1� as a functional integral over a delta function. This leads to

�
�

T�,�u��� =� D���� D� �����
�=1

c

�
k=1

p−1 � DWk,���Wk,���F����x��

−� dx ��x�
Z���,�Wk,��k,�� � �

�=1

c

�
k=1

p−1
dhk,�Wk,��hk,��

�2 cosh��hk,���m exp	m

2 �
�

log F��x,�hk,��k,��
��x� − R�x�,�h�
k,��k,�����

��Z���,�Wk,��k,���n/m�
�=1

n/m � dz ���z�exp	�z�
	

�	,�
 . �A6�

The functional Z� is a normalization factor given by

Z���,�Wk,��k,��  � dx ��x� � �
�=1

c

�
k=1

p−1
dhk,�Wk,��hk,��

�2 cosh��hk,���m exp	m

2 �
�

log F��x,�hk,��k,��
 . �A7�

We now identify this with Eq. �34� to find the self-consistent equation for the functional distribution ����. We also take the
limit n→0:

����� =� D� �����
�=1

c

�
k=1

p−1 � DWk,���Wk,�� �A8�

��F	���x�� −� dx ��x�
Z���,�Wk,��k,�� � �

�=1

c

�
k=1

p−1
dhk,�Wk,��hk,��

�2 cosh��hk,���m exp	m

2 �
�

log F��x,�hk,��k,��

 �A9�

�	��x� − R�x�,�h�
k,��k,���
 . �A10�

A similar calculation yields analogous equations for the two other distributions ���� and ����.
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